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COMPUTING THE CANONICAL HEIGHT ON K3 SURFACES 

GREGORY S. CALL AND JOSEPH H. SILVERMAN 

ABSTRACT. Let S be a surface in 1p2 X jp2 given by the intersection of a (1,1)- 
form and a (2,2)-form. Then S is a K3 surface with two noncommuting in- 
volutions o-x and oy. In 1991 the second author constructed two height func- 
tions h? and h- which behave canonically with respect to ox and oy, and in 
1993 together with the first author showed in general how to decompose such 
canonical heights into a sum of local heights EZ A? (. , v). We discuss how 
the geometry of the surface S is related to formulas for the local heights, and 
we give practical algorithms for computing the involutions ox, 0,Y, the local 
heights A?( ,v), A-(.,v), and the canonical heights h+, h- 

INTRODUCTION 

Let S C Ip2 X jp2 be a K3 surface defined by the vanishing of a (1,1)-form L(x, y) 
and a (2,2)-form Q(x, y). The two projections S __+ p2 are double covers, so they 
induce involutions ax, y S -+ S. The involutions ax and ay are rational maps, 
and they will be morphisms provided that the projections have no degenerate fibers, 
that is, no fibers of positive dimension. 

Suppose now that S is defined over a number field K and that ax, ay are mor- 
phisms. Then Silverman [6] has defined two height functions h4: S(K) -+ [0, oc) 
which behave canonically relative to ax and ay. (See Theorem 3.1.) These heights 
have many interesting arithmetic properties, including the property that 

h+(P) =0 h>(P) =0 - P has finite orbit under ax and ay. 

Thus h+ and h are analogous to the usual canonical heights on elliptic curves and 
abelian varieties. 

The construction of canonical heights can be extended to even more general 
settings whenever Tate's telescoping sum construction applies, see [2, Theorem 1.1]. 
Neron and Tate have shown that the canonical height on an abelian variety can be 
decomposed into a sum of local height functions, one for each place of K, and this 
construction can also be generalized [2, Theorem 2.1]. 

The decomposition into local heights offers a more practical method for calculat- 
ing the canonical height. For non-Archimedean v, one can show that if the variety 

@)1996 American Mathematical Society 

259 

Received by the editor August 2, 1994. 
1991 Mathematics Subject Classification. Primary 11G35, 11Y50, 14G25, 14J20, 14J28. 
Key words and phrases. K3 surface, canonical height. 
Research of the first author was partially supported by NSF ROA-DMS-8913113, NSA MDA 

904-93-H-3022, and an Amherst Trustee Faculty Fellowship. 
Research of the second author was partially supported by NSF DMS-9121727. 



260 G. S. CALL AND J. H. SILVERMAN 

and morphism have good reduction modulo v, then the canonical local height can 
be computed as a simple intersection index. It remains to devise a method for 
computing the canonical local height for non-Archimedean places of bad reduction 
and for Archimedean places. 

Tate [7] described a rapidly convergent series for the canonical local height on 
the v-adic points of an elliptic curve provided that the complete field KV is not 
algebraically closed, and Silverman [5] gave a modified series which converges with 
no restriction on Kv. These constructions were generalized by Call and Silverman 
[2, ?51, where they gave a series for the canonical local height on a general vari- 
ety V with morphism q$: V -- V. As explained in [2], in order to implement this 
series in practice, one must explicitly write down certain rational functions whose 
existence is guaranteed by general principles. Further, one must have an explicit 
implementation of the morphism q$. 

In this paper we will describe how to implement the algorithms in [2] for the K3 
surfaces described above. We begin in the first two sections by setting notation and 
studying the geometry of the surface S. In particular, we develop important formu- 
las related to degeneracy of fibers and the involutions a' and ay. The third section 
briefly reviews the theory of canonical heights on S as developed in [21 and [6]. In 
?4 we define some error functions and give convergent series for the canonical lo- 
cal heights which are useful theoretically, but not good for practical computations. 
Next in ?5 we show that if the fibers of S are nondegenerate modulo v, then the 
error functions all vanish, and hence the series from ?4 reduce to a single term. 
This reduces the computation of h+ and h- to computing the local height for the 
places of bad reduction and for the Archimedean places. 

The remainder of the paper is concerned with practical computation of these 
remaining canonical heights. We begin in ?6 by giving an algorithm to compute 
the involutions a' and ay. Then in ?7 we construct the rational functions needed to 
implement the series [2] for the canonical local height and we describe the resulting 
algorithm. Finally, in ?8 we consider the particular surface S already studied in [6, 
?5]. We show how to find the primes of bad reduction, and we implement our 
algorithms to compute the canonical local and global heights of some of its points. 
An appendix is included giving the implementation of the algorithms to compute 
ax )r ay, +( v) and >-( ,v). 

1. NOTATION AND GEOMETRY 

In this section we will describe the notation which will be used throughout this 
paper. 

K afield 

x, y coordinate functions on p2 x IP ) x = [xo, xl, x2], Y = [Yo, Yl, Y21 

L, Q a (1, 1)-form and a (2, 2)-form defined over K by 
2 2 

L(x,y) = 3 aijxiyj, Q(x,bY) kl b XklX XjYkYl 
i,j=O i,j,k,l=O 
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S/K the variety S C P2(K) xIF2 (K) defined by L(x,y) = Q(x,y) = 

0. We will always assume that S has dimension 2 and that 
S does not contain a component of the form {a} x P2 or 
J2 x {b}. However, unless explicitly stated, we do not assume 
that S/K is smooth. 

P1, P2 projections pj: S __ p2 induced by pj Ip2 X 2 _ 2 

ax. )y involutions on S induced by the double covers pj: S __ p2. 

m, n indices chosen from {0, 1, 2}. 

DX, Dy the divisors Dx = pt*{Xm = 0} and Dy = p*{y, = 0} in Div(S). 

It is convenient to define linear forms L* and quadratic forms Q* by 

Lj(x) =the coefficient of y in L(x, y), 

Lx (y) = the coefficient of xy in L(x, y), 

Qxl%(x) = the coefficient Of YkYl in Q(x, y), 
Qt j(y) = the coefficient of xixj in Q(x, y). 

This notation allows us to write 

2 2 

L(x, y) = Lix (x)yi = Liy (y)x, 
i=O i=O 

QX ) QiX (x)yiyj = Qt9.j(y)xix3., 
O<i<j<2 O<i<j<2 

The following quartic forms will appear frequently in our calculations. In these 
formulas, the indices (i, j, k) are some permutation of {0, 1, 2} and the * may be 
replaced by either x or y. 

(1) Gk = (Lj*)2QG L - L jLQ*j + (L4)2 j 

(2) _ LQ - T * T _ L~Q - L_*L Q* Q* + (L*)2Q. ij - zl'il'jWk~i jk 'i kWj l'j kk + 7 kJWj 

Finally we define four sixth-degree forms RX(X), R (Y), gX(X) and gy(Y) by the 
formulas 

(3) R* Qoo(Qt2)2 + Qt1(Qo2)2 + Q2(Q1)2 - Q1QQ2QQ2 - Q 
(Hij) -4GiGj 

(4) - 7 

A straightforward calculation shows that gx (X) and gY (Y) are indeed homogeneous 
polynomials and that their definition is independent of the ordering of (i, j, k). More 
precisely, one can verify that 

g* = L*2*2 +L L*2Q 2+ + L2 
2 

- 2LLt*Q* r - 2L*L*Q*Q2 - 2L*L*<Q* Qr* 5) 0 o 102Q*12- o 2 C0 1kC 1 2 C0 k02 

+ 4L*L*Q301Q2 + 4L*L*Q*2Ql + 4L*L*Q*2Qoo 

- 4L*2Q*Q2 - 4L*2QQ2 - 4L*2Q*1Q* 0 1 Q2*2 I QO*0Q2*2 2 Q1 00o 
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We call gX and gY the ramification polynomials of o' and oy respectively. See 
Proposition 2.1 below for the appropriateness of this name. 

For any given points a, b E IP2 we denote various fibers as follows: 

La = {(a,y) p2 X p: L(a,y) = O}, 

Q 
= {(a, y) E p2 x p2: Q(a,y) = O}, 

Sa = p' (a) Lx n Qx 

L = {(x,b) EE I2 x EF2: L(x,b) = Oil 

Qy = {(x,b) (E p2 x 2: Q(x, b) =O}, 

'b = P2 (b) = Lb n Q'. 

To ease notation, we will often write y E Lx rather than (a, y) E LX. 
We begin with the following elementary result, where we recall that the rank of 

a bilinear form such as L is defined to be the rank of the associated 3 x 3 matrix 

(aij). 

Lemma 1.1. (a) The following four conditions are equivalent: 
(i) There exists an a E IF2(K) such that LX(Y) 0. 

(ii) There exists a b E p2(K) such that Lb(X) . 
(iii) rank L < 2. 
(iv) The locus of L(x, y) = 0 is singular in I2 x p2 

(b) If S is smooth, then rankL > 2. 

Proof. (a) Let A = (aij) be the matrix associated with L. Condition (i) says that 
the columns of A are linearly dependent, and (ii) says that the rows are dependent, 
so (i), (ii) and (iii) are equivalent. Further, since L- = L/&yj and Liy = &L/xi, 
we see that the locus L = 0 has a singular point if and only if both (i) and (ii) are 
true. 

(b) If L has rank less than 2, then there are lines 11 and 12 in I2 such that 
L(a,Y) = 0 for all a E 11 and L(X,b) --0 for all b E 12. Fix some a E 11. 
Let b E I2 be an intersection point of the line 12 and the curve Q(a, Y) = 0. Then 
(a, b) E S and 

L (a,b) = 
LY'(b) = 0 and yOL(a,b) = LJ(a) = 0. 

Hence (a, b) is a singular point of S. O 

For most points a and b, the fibers S' = pT1(a) and S p - V1(b) each consists 
of two points. We will say that a fiber is degenerate if it has positive dimension, 
and that it is nondegenerate if it consists of a finite set of points. Notice that the 
projections P1 and P2 are flat if and only if they have no degenerate fibers. The next 
proposition tells us that if S is smooth, then the flatness of P1 and P2 is equivalent 
to the condition that the rational maps ax and 'y are morphisms. 

Proposition 1.2. Suppose that S is smooth. Then the projections P1 and P2 are 
flat if and only if the maps ax and 'y are morphisms of S to itself. 
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Proof. Suppose first that Pi is flat. Then for each a E P2, the fiber S has dimen- 
sion 0, so 

dimLx = dim Q 1 and Lxa; Q. 

It follows that Sa = Lx n Qx consists of exactly two points (counted with multi- 
plicity), and hence ox is a morphism. Similarly, if p2 is flat, then ay is a morphism. 

To prove the converse, we assume that ox and 'y are both morphisms. By 
symmetry, it suffices to prove that P1 is flat. Suppose first that some fiber Sa has 
dimension 2. This means that Sax = {a} x IP'2, contradicting the assumption that S 
has no components of this form. Hence the fibers have dimension at most 1. 

Next suppose that Sa has dimension 1. Under our assumption that ax and a'Y 
are morphisms, it follows from [6, Proposition 2.5] that the divisor 4Dx - Dy is 
ample. On the other hand, we have 

(Dx ) (Sax) = 0 and (Dy). (Sax) > 0, and hence (4Dx - DY). (Sax) < 0. 

But an ample divisor and a positive divisor always intersect positively. This con- 
tradiction shows that Sa has dimension 0, which concludes the proof that P1 is 
flat. D 

Corollary 1.3. If ox and ay are automorphisms of S and if S has at least one 
degenerate fiber, then S is singular. 

In view of Proposition 1.2 and Corollary 1.3, it becomes important to determine 
which fibers are degenerate. The next proposition gives a criterion in terms of 
the Gz and H*j forms defined earlier. 

Proposition 1.4. Let (a, b) E S. 
(a) Sa is a degenerate fiber if and only if 

Gx (a) = Gx (a) = Gx (a) = Ho1 (a) = Hx2(a) = H (a) =0. 

(b) Sb is a degenerate fiber if and only if 

Go (b) = Gy (b) = Gy (b) = Hoy1 (b) = HO'2(b) - Hy'2(b) - 0. 

Proof. By symmetry, it suffices to prove (a). The surface S is defined by the two 
equations L(x, y) = Q(x, y) = 0. If we write yo = (L-Lxyi -Lxy2)/Lx, substitute 
into Q, and do a little algebra, we obtain an identity of the form 

(Lx )2Q = Gxy 2 + Hx Y1Y2 + Gxy22 

+ L{QxoL + ((LxQxi - 2LxQox)yj + (LxQx2 2LQ0)Y2)0 } 

There are analogous formulas obtained by eliminating Yi and Y2. Since we will 
generally be interested in studying points satisfying at least L(x, y) = 0, we will 
write these three identities as congruences in the polynomial ring 2[aij, bijkl, xi, yM] 
as follows: 

(6) Lx(x)2Q(x,Y) Gx(x)y 2 + Hx (x)yly2 + Gx (x)y2 (mod L(x, y)), 

(7) Lx (x)2Q(x, y) Gx (x)y2 + Hox2(x)yoy2 + GX (x)y2 (mod L(x, y)), 

(8) L2X (x)2Q(x, y)-G{(x)y 0 + Hox1 (x)yoyi + Go(x)yl (mod L(x, y)). 
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Now let (a, b) E S. If L(a, y) = 0, then Sx = Qx, so Sx is degenerate. Further, 
(1) and (2) imply that Gx(a) = Hi(a) = 0 for all i,j,k, so we are done in this 
case. We now assume that L(a, y) 7& 0. 

Suppose first that Gx(a) = Hix(a) = 0 for all i,j. We evaluate (6), (7), and (8) 
at x = a and note that one of the Lx(a)'s is nonzero. Hence we must have 

Q(a,y) -0 (mod L(a,y)), and so Lx c QX. 

In other words, the fiber Sa contains the entire line LX, so it is degenerate. 
Conversely, suppose that Sax is degenerate. Under our assumption that L(a, Y) t 

0, this implies that Sa = La C Q'. In other words, Q(a,y) = 0 for all y E La. 
We start by showing that Gx (a) = Gx(a) = Gx (a) = 0. If Lx(a) = Lx (a) = 0, 
then Gx (a) = 0 directly from the definition (1). If Lx(a) 7& 0 or Lx (a) 7& 0, then 
Yo = [0, Lx (a), -L (a)] E Lx, and we have 

(9) 0 = Q(a,yo) = Qxl(a)L' (a)2 -2Q2(a)Ll(a)L2(a) + Q22(a)Ll(a)2 - G0(a) 

A similar argument shows that Gx (a) = Gx (a) = 0. 
Evaluating (6), (7), and (8) at x = a and substituting Gx (a) = Gx (a) Gx (a) 

0 gives 

(10) H (a)Y Y2 = Hox2(a)YoY2 = Hox1 (a) yoy = 0 

for all points y = [Yo, 
Yl, y21 E Lx. By symmetry, it suffices to check that Hx (a) 

0. If Lx contains a point with Y1Y2 7& 0, then (10) gives the desired result. Other- 
wise, Lx must be one of the two lines Yi = 0 or Y2 = 0. If Lx is the line Yi = 0, 
then Lx (a) = Lx (a) = 0, so Hx2(a) = 0 from the definition (2); and similarly if Lx 
is the line Y2 = ? 

We are now ready to give formulas for computing the automorphisms ax and ay 
on degenerate fibers. These formulas will be useful for theoretical work. We will 
describe a somewhat more practical algorithm for computing ax and ay automor- 
phisms in ?6. 

Corollary 1.5. Fix a point P = (a, b) E S. 
(a) Suppose that Sax is a nondegenerate fiber, and write oxP = (a, b'). Then 

b, b' are the unique points on Lx defined by the three simultaneous equations 

Gx (a)Y 2 + Hkx (a) Yk Y, + Glx(a) Yk2 = 0, (k, l) E 4 (0, 1), (0, ),(,2} 

For each such pair (k, 1), the coordinates of P and x P satisfy the relation (in IP2) 

[bkbl, bkb' + b' 
bi, bib'] 

= [Gx (a), -HHx(a), Glx(a)]. 

(b) Suppose that Sy is a nondegenerate fiber, and write &yP (a', b). Then 
a, a' are the unique points on Lb defined by the three simultaneous equations 

GY(b)X? + HiY (b)XjXj + Gj'(b)X =0, (i)j) E {(0,1), (0,2), (1, 2)}. 
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For each such pair (i, j), the coordinates of P and &"P satisfy the relation (in 
Dp2) 

[aiac, a-a + a$aj, ajaj - [G8'(b), -Hfy (b), G^ (b)]. 

Proof. By symmetry, it suffices to prove (a). Since Sx is nondegenerate, ax is 
well defined. More precisely, b and b' are defined to be the unique points in 
Sjx = Lx n Qx. Hence, our assertion is an immediate consequence of the identities 
(6), (7), and (8). D 

2. SINGULAR POINTS, DEGENERATE FIBERS AND RAMIFICATION POINTS 

In this section we will study the relationship between singular points on the 
surface S, degenerate fibers of the projections Pi: S -, p2, and the ramification 
loci of these projections. We begin by showing that the ramification polynomials gx 
and gY defined earlier actually capture the ramification locus of the projections. 

Proposition 2.1. Let P - (a, b) E S. 
(a) gx(a) = 0 if and only if either Sax is degenerate or ax(P) = P. 
(b) gY(b) = 0 if and only if either Sb is degenerate or uy(P) = P 

Proof. This follows directly from Proposition 1.4, Corollary 1.5, and the definition 
of gx and gY. 

Notice that the condition &x(P) = P says precisely that the projection P1 
S ,_ p2 is ramified over a. Thus, Proposition 2.1 implies that gx(x) _ 0 is the 
ramification locus of Pi, and similarly gY (y) = 0 is the ramification locus of P2. We 
next verify that the degenerate fibers lie above singular points of the ramification 
locus. 

Proposition 2.2. Let P = (a, b) C S. 
(a) If Sa is degenerate, then the ramification curve gX (x) = 0 is singular at 

x = a. 
(b) If Sb is degenerate, then the ramification curve gY(y) = 0 is singular at 

y = b. 

Proof. Suppose that Sax is degenerate. Then Proposition 1.4 tells us that G-T(a) = 

Hixj (a) = 0 for all i, j. If at least one of LOX(a), L{x(a) and Lx(a) is nonzero, then 
the defining equation (4) for gx tells us that 

(a) = ?9(a)= (a) = 0. 

Otherwise the alternative formula (5) for gx gives us the same result. Hence a is 
a singular point of the ramification curve. This proves (a), and (b) is proven simi- 
larly. O 

Next we describe those a's and b's for which the curves Qx and Qb are smooth. 

Lemma 2.3. Let P = (a, b) C S. 
(a) Qx is a smooth curve if and only if Rx(a) zA 0. 
(b) Qb is a smooth curve if and only if RY(b) :8 0. 
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Proof. By symmetry, it suffices to prove (a). Recall that the curve Q' is given by 
the equation Q(a, y) = 0. Suppose first that char(K) z 2. Then Q' is singular if 
and only if there is a point b = [bo, b1, b2] c ]F2 such that 

OQ(a, y) (b) = 2Qx0(a)bo + Qx1(a)bl + Qo2(a)b2 = 0, 

(11) Q(a, y) (b) = Qxl(a)bo + 2QX1(a)bl + Q12(a)b2 0, 

OQ(a',y) (b) = Q02(a)b0 + Qx2(a)bl + 2Qx2(a)b2 = 0. 
&Y2 

12 

These linear equations have a solution in p2 if and only if 

/ 2QXoo(a) Qxl (a) Qo2(a 
det Qxl(a) 2Qx1 (a) Q12(a) =-2Rx(a) 78 0. 

Qo2(a) Q12(a) 2Q22(a) / 
Now suppose that char(K) = 2. If Qx1 (a) = Qx2(a) = QX2(a) = 0, then RX(a) = 

0 directly from the definition (3), and all three partial derivatives &Q(a, y) /lyi are 
identically zero from (11). Otherwise, the point bo = [Q12(a), Q02(a), Qxl(a)] is 
the unique point in E2 such that all three partial derivatives (11) vanish. Since 
Q(a, bo) = RX(a), we conclude that Qx is singular if and only if Rx(a) = 0. O 

Lemma 2.4. Let P = (a, b) E S. 
(a) If Sx is degenerate, then either L (a, Y) 0 or RX (a) = 0. 
(b) If Sb is degenerate, then either L (X, b) 0 or Ry (b) = 0. 

Proof. By symmetry, it suffices to prove (a). Suppose that Sa is degenerate and 
that L(a, Y) # 0. Then L(a, Y) must divide Q(a, Y), so the curve Qx is reducible, 
hence singular. It follows from Lemma 2.3 that Rx(a) = 0. 

Proposition 2.5. Suppose that P = (a, b) E S is a singular point of S. Then 
gx(a) = gy(b) = 0. In other words, a singular point lies above both of the ramifica- 
tion loci. 

Proof. By symmetry, it suffices to prove that gY (b) = 0. We begin by deriving some 
new identities. For each pair (i, j) with 0 < i, j < 2, let Mij denote the matrix of 
partial derivatives 

M (aLL/xi) (a, b) (&L/9xj) (a, b) \ 
Liii 

(9Q/&xj) (a, b) (&Q/&xj) (a, b)} 

A little algebra gives the identity 

(12) Ly (b) det (Mij) 2aj Gy (b) + akHjk(b)' 

valid for all i, j, k such that {i, j, k} = {O, 1, 2}. 
If Ly (b) = L (b) = Ly (b) = 0, then gy(b) = 0 from (5). So we may assume (by 

symmetry) that Ly (b) : 0, and now (4) says that we must verify that Hoy (b)2 = 

4Goy (b) Gy (b) . 
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By assumption, the point P = (a, b) is a singular point of S, so det(Mij) = 0 
for all i, j. Evaluating (12) for various i, j, k's gives 

2aoG'(b) + a,Ho'(b) = 0, 

2aiG (b) + aoHol (b) = 0. 

It follows either that Hoy1(b)2 - 4G(b)Gy (b) = 0, in which case we are done, or 
else that ao = a, = 0. But if ao = a, = 0, then a2 :# 0, and the equation 

0 = L(a, b) = Lo(b)ao + L (b)aj + L (b)a2= L (b)a2 

contradicts our assumption that LY (b) : 0. O 

Corollary 2.6. Suppose that P (a, b) c S is a singular point of S. 
(a) If L(a, Y) 0 0 and RX (a) 0 0, then jX (P) P. 
(b) If L(X, b) 0 0 and RY(b) 0 0, then jY(P) P. 

Proof. This follows immediately from Proposition 2.1, Lemma 2.4 and Proposition 
2.5. 0 

3. CANONICAL GLOBAL AND LOCAL HEIGHTS ON S 

To the notation and hypotheses of the first two sections we make the following 
additions: 

K a field with a complete set of proper absolute values MK satisfying the 
product formula, see [3]. We will call such a field a global height field, 
since it is for such fields that one can define a height function on Ipn (K). 

S/K we will henceforth assume that S/K is smooth and irreducible and 
has no degenerate fibers, so a' and 0Y are automorphisms of S from 
Proposition 1.2. 

3, automorphisms of S given by X =Y o jX and V/ = - o 0Y. 

M the set of absolute values on K extending those in MK 

= 2 + -. 
E+, E- c Div(S) 0 R, the divisors defined by 

E+ = ODx - Dy and E- = -Dx + 3DY, 

where m, n C {0, 1, 2} are the indices fixed in ?1. If it is necessary to 
specify m and n, we will write E+ and E7n. 

r7 e7- Pic(S) 0 R, the divisor classes of E+ and E- respectively. 

h?,+, h?- Weil height functions h?,+ h?,-: S(K) R corresponding to the 
divisor classes 17+ and 7y-. 

The divisor classes 77+ and ry- are eigenclasses for the morphisms X and V/ re- 
spectively, each with eigenvalue 432 > 1, 

(13) q 3*7+ =321+ and * /327- 

Using these divisor class relations, Silverman [6] constructed two canonical heights 
h+ and h- on S as described in the following result. 
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Theorem 3.1. There is a unique pair of functions 

h+, h-: S(K-) ' R 

with the following two properties: 

(i) h? = hq? + O0(1) . 
(ii) h+ o ax = /13ThT and hA oy = /3+lhT 

In addition, h+ and h- also satisfy: 
(iii) h+ oq = 2h+ and h- o = 132h-. 
(iv) For all P S S(K), 

h+(P) _im arnd h- (P) = rn 3 
h 

2n( 

Proof. Parts (i)-(iii) of this result correspond to the same parts of [6, Theorem 1.1]. 
Notice that (iii) is a consequence of (ii). The limit formulas given in (iv) may be 
proved using Tate's method, see [6, ?3] or [2, Proposition 1.2]. 0 

It follows from [2, Theorem 1.1] that properties (i) and (iii) in Theorem 3.1 
characterize the unique canonical heights h+ = hs,T,+,o and h- = hs,,q-, , on S 
associated with the divisor classes 77? and the morphisms q and Vb. To compute 
these canonical heights, we will decompose them into the canonical local heights 
constructed in [2]. We begin by refining the divisor class relations (13). 

Lemma 3.2. Define functions fx, fY C K(S) by 

fX(P) = Gx(x)/xm and fY(P) = Gy(Y)/Yn, where P = (x,y) 
c S. 

(a) (Jx)*E+ = -E- -div (fx), (Jy)*E- = -'E+-div (fY), 
(Jx)*E - = 3E + /3div (fX), (OJy)*E+ = /3E- + 3div (fY). 

(b) *E+ /32E+ ? /3div (f Y o ax) + 32div (f X), 

,O*E- = /32E- + 3div (fx o aY) + /2div (fY). 

Proof. (a) Clearly, (ox)*Dx = DX and (oy)*Dy = Dy. Further, the defini- 
tion of ax says that (P) + (jXP) = p*(p1P) as zero cycles on S, so (Jx)*Dy n 
P*PI* (Dn) -Dy. Let i, j be the indices so that {i, j, n} = {O, 1, 2}. Then 

Pi* (Dn) = P1* ? A ({Yn = o}) 
= {x E 1P2: L(x,y) = Q(x,y) = Yn = 0 for some Yi,Yj}. 

Setting Yn = 0 and eliminating yi, yj from the equations 

L(x,y) = L-(x)yi + LJ(x)yj = O and 

Q(x, Y) = Qij(X)Yi2 + Q((x)y,Yj + Q (x)yj 2 = 0 

yields 

Pi* (D ) = {x c p2 Qi (X) LJx (x) 2 _ Qxj (x) Lx (x) Ljx (x) + Qx (x) Lx (x)2 = o} 

= {X (E p2 Gx(x) = 0}. 
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Hence, 

(14) (Jx)*DY =- p ({Gx (x) = O}) -Dy = 4D - Dy + div(fx), 

where fx is the function fx(x, y) = (x)lx4. 
Now using (14) and the definition of E+, we compute 

(5x) * E+ = (5x) * (/Dx - DY) = 3D -(4Dx - Dy + div (fX )) 

= (f - 4)Dx + DY - div(fX) = iT1(-Dx + 3DY) - div(fX) 

= -'E-- div(fX). 

This proves the first formula in (a). Next we apply (aX)* to both sides to obtain 

E+ o-3(,x)*E- - div(fx o ax) = 3l(Jx)*E- - div(fx). 

This gives the desired formula for (ax)*E-. The formulas for (uy)*E? are proven 
similarly. 

(b) We compute 

O*E+ = (jx)* ((uy)*E+) = (5X)* (3E- + / div(fY)) 
= i3(/3E+ + 3div(fx)) + i3div(fY o x) 

= /32E+ + /32 div(f x) + 4 div(fY o ax) 

This gives the first formula in (b), and the second formula is proven similarly. C 

The divisor relations in Lemma 3.2 yield corresponding canonical local height 
functions. 

Theorem 3.3. There is a unique pair of functions 

A\ (S(K-) -, IE?I) x M R 

which are Weil local height functions for the divisors Ei and which satisfy 

A+(qp V) = /2A+(P,V) +!3V(fY(jxp)) +?2v(fx(p)), 

A- (P, v) = AV (P, v) + /3v(f x(jYP)) +?2v(fv(P)) 

Proof. This follows directly from [2, Theorem 2.1(b)] and the divisor relations 
proven in Lemma 3.2(b). 

The global canonical heights h? can then be computed by summing the local 
canonical heights over all absolute values. 

Theorem 3.4. Let L/K be a finite extension. Then with notation as in Theorems 
3.1 and 3.3, 

h+(P) 
1 

[Lv: Kv] A(P,v) for all P c S(L) , JE+j. 
LK] 

vML 
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4. FORMULAS FOR LOCAL HEIGHTS 

In this section we will develop formulas for computing local heights. We begin 
by fixing Weil local heights on S for the divisors D' and Dy. So for any point 
P = (x, y) C S, we define 

(15) ADS (P,v) V(Xm) -min{v(xo),v(xi),V(X2)}, 

(16) ADY (P, V) V(Yn) -min{V(YO), V(Yl), V(Y2)} 

We then use these to fix Weil local heights associated with E+ and E-: 

(17) AE+ = /3ADx -ADY, AE- = -ADx + /ADY. 

The divisor relations described in Lemma 3.2 lead to local height relations, which 
prompts us to define the following three pairs of "error functions": 

(18) 6 (P, v) = AE+ (x P,V) -fY1AE-(P,V) +V(fx(P)), 

(19) 6Y(P, v) = AE- (CYP, v) - 371AE+(F, V) +-V (fY(P)), 

(20) a-(P v) = AE /3 ) 2AE (P)-Vt (f Y (5X p)) _ 2W V f 
x 

( p)), 

(21) ay(P, v) = AE- (P, V) -/32AE- (P, V) -V (f x 
(Jy p)) 32V (fy (p)), 

(22) +(P, v) = A(P, v) - AE+ (P, V), 

(23) (P, v) = AJ(P, v) - AE- (P, V). 

Next we give some basic properties of these functions. 

Lemma 4.1. Let (P,v) c S(K) x M. 
(a) The functions 8x, 6:y, -y?, <, ), - all extend to MK-bounded, 

MK-continuous functions on S(K) x M. (See [3] for basic definitions.) 
(b) 8x(axP,v) = 8x(P,v) and 6Y(CYP,v) = 8Y(P,v). 

(c) + (P, v) 
- _ 328x (p, v)- _ Y (aXP, v), 

- (P, V) -_/32P6y ( -p, V),_:X(Yp,V)- 

(d) Y+(P v) - /32tI+(p, V)_- (qp3, V) 
y- (P, v) - /23j- (p, v) - 7- (P, V). 

Proof. (a) The divisor relations given in Lemma 3.2 and functoriality of local height 
functions immediately imply the desired result for 6x,6Y, y+, -. And the same 
result holds for +, '- since Theorem 3.3 says that AE? and A? are Weil local 
height functions associated with the same divisors. 

(b) For (t,v) C p2(K) x M, let Ar(t,v) = maxi{v(tr/ti)}. As in Corollary 1.5, 
we write P = (x, y) and &- (P) = (x, y'). Notice that with this notation we have 

ADY (P, V) = An(Y, V) and ADY (v P, v) = An(Y v). 

Expanding (18) using (15) and (17), we compute 

6 (P,v) =ADx (xFP,v) - ADY (uP,V) + /ADx (P,v) - ADY(P,V) +v(fx(P)) 

= v(Gn(x)) - 4 <mm n{v(xi) }- m<ax2{VK( Yi ) - m<tax {V (S 
(24)2 = O? iV2+ V (Y ) }fiP2 
(24) =V(Gx(x))-4 min{v (xi)} max "4n-.a vY 

n?i2 <i,<2 <2 
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This last expression is symmetric in y and y', which shows that 8' has the same 
value at P = (x, y) and cxP P(x, y'). This proves the first part of (b), and the 
second part is proven similarly. 

(c) Let (P,v) E (S(K) x IE+ x M. From (18) we have 

AE? (P, v) = AE? (jX9Xp V) = 6x(uxP v) + Y1SAE- (jXP, v) - v(f x(xP))- 

But fx(jxP) fx(P) from the definition of fx and 8x(axP, v) 8x(P, v) from (b), 
so after a little algebra we obtain 

(25) AE- (P, V) = AE+ (F, V) + V3(fx(P)) - f6x(p, V). 

Similarly, it follows from (19) that 

(26) AE+ (jYP, V) = AE- (F, V) + /Vv(f '(P)) - /3Y(p, V). 

Using (25) and (26), we obtain 

AE+ (qP, V) = AE+ (jYjxP, V) = /AE- (XP, V) + V3(fY(jxP)) -_ 6(xp, V) 

= 3 (3AE+ (F, V) + ?V (f x (P)) _ 36x (p V)) +!3V (fY (gx P)) - 6Y (x P, V) 

Comparing this last equation with (20), we conclude that 

(27) (P,xv) =-32px(P) V)- Y(xP, V), 

for all P c S(K) . IE+l and all v c M. But +, 6x and 8y are M-continuous 
functions on S x M, and S . IE+ is a Zariski open subset of S, so it follows from 
[3, Chapter 10, Proposition 1.5] that (27) holds for all (P, v) c S x M. This proves 
the first part of (c), and the other part is proven similarly. 

(d) To ease notation, we will write 

V(P) 3V(fY(ax p)) + /32V(fx(p)) 

so Theorem 3.3 and (20) have the compact form 

(28) ? X = X32A + V and AE+ ? 0 2 AE+ + V + Y+. 

Using (28) and the definition (22) of '+, it is now a simple matter to compute 

-2+ 
o 

X 2(q + - AE+) - (A+ o ? - AE+ 
o 

q) 

= 02(>- AE+) - ((02\+ + V) - (72 AE+ + V + _Y)) 

This proves the first identity in (d), and the second is proven similarly. 

Our final task in this section is to use the functions 6x, 8Y, y+, -y to give conver- 
gent series for the canonical local height functions. These series can, in principle, 
be used for computations, although we will later modify them to make them more 
practical. However, an important consequence of our result is that if the error 
functions are zero, then the naive Weil local height is already the canonical local 
height. In the next section we will give a sufficient condition involving good reduc- 
tion for this to occur at a non-Archimedean absolute value. For a more thorough 
investigation of the connection between degenerate reduction and canonical local 
heights, see [1]. 
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Proposition 4.2. We have 

(P, v) = AE+ (P, V) + E/P-2n-2y+ (qonp, V) 
n>O 

=A+ (P,V) - 6x(P V) - Z /3-2n(x(x(onp V) + /38Y(?np, V)), 
n>1 

A (P) AE- (P, V) + E13-2n-2,)/- (Q1n p, V) 
n>O 

AE- (P, V) - 6y(PV) - Z 3-2n (6&y(,np, V) + f3&x (pnp V)) 

n>1 

Proof. We use Lemma 4.1(d) to write 

AE+ -2 3 g o X= AE+ + > 03-2n-2(/32?+ 0 on + 0O(n++1) 

n>0 n>0 

We know that '+ is bounded on S(Kv) from Lemma 4.1(a), and 4 > 1, so we are 
allowed to rearrange the terms in the series. The terms telescope, so we find that 

AE+ + 3 3-2n-2 )+ 0 qn5 _ AE+ ? + + 

n>0 

This proves the first formula for A+. 
To prove the second formula, we compute 

AE+ + E 0-2n-2 Y)+ 0 qn from above, 
n>0 

AE? - E 
3-2n-2(/32&X a o5n + 13& 0a 0 on) from Lemma 4.1(c), 

n>0 

AE+ - >O-2n-2(/32&x O q5n + 036Y o ?,n+l) from Lemma 4.1(b), 
12>O 

AE+ 
-x _>3 3-2n (6x 0 o71n + 386y 0 1n). 

n2>1 

This proves the second formula for At The formulas for A- are proven simi- 
larly. ? 

The functions y+ -7y, x, 6y are bounded on S(Kv) from Lemma 4.1(a), so the 
series in Proposition 4.2 converge quite rapidly. More precisely, using the first N 
terms of the series gives an error of Q(0-2N), where the big-O constant depends 
on the equations defining the surface S. The following corollary makes this remark 
more precise. We will see in ?8 how to use this corollary for practical calculations. 

Corollary 4.3. Let v C MK. Suppose that Cx and Cy are quantities so that 

(29) 16x(P,v)I < Cx and 16Y(P,v)I < CY for all P E S(K). 
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(a) Let Q C S(K) be a point satisfying 

(30) x(5'nQ, v) = 61(c5nQ, v) 0 O for all 0 < n < N. 

Then 

v)I =A+(Q,v) -AE+(Q,v) <?/2 1(C +3Cy). 

(b) Let Q C S(K) be a point satisfying 

(31) 6xQ(VfQ, v) = b9(g)nQ,v) = 0 for all O < n < N. 

Then 

19- (Q' V) I = S(Q, V) -SAE- (Q V) I<2 (CY + c ). /32 -N 

Proof. By symmetry, it suffices to prove (a). To ease notation, we will omit v from 
the notation. We compute 

A+(Q) - AE+(Q)I 

< 16x(Q)l + EZ3-2n (6x (nQ)j + j3ly(c$lnQ) ), from Proposition 4.2, 
n>1 

E 0-2n( &x(6nQ)| + 0j6y(6nQ)j), from (30), 
n>.N +1 

? S /32n(CX +/3C), from (29), 
n>.N +1 

- o-2.V(Cx + O3Cy)/(02 - 1) 

5. THE CANONICAL LOCAL HEIGHT FOR NON-ARCHIMEDEAN V 

In this section we will give an explicit formula for the error functions 6-', 8y for 
non-Archimedean absolute values. 

Definition. Let a E P2(K) and v E Al be a non-Archimedean absolute value. We 
say that [ao, a,, a2] are v-minimal coordinates for a if min{v(ao), v(al), v(a2)} = 0. 

Theorem 5.1. Let v E Al be a non-Archimedean absolute value, let P C S(K), 
and choose v-minimal coordinates (a, b) for P. Then 

(32) 
6x (P, v) = min v (Gxz (a)), v (G" (a)), v (Gx (a)), v (Hxz (a)), v (Hor2 (a)), v (Hx (a))}X 

(33) 
6y (P, v) = min v (Gy (b)), v (G' (b)), v (G2y(b)), v (Hy9 (b)), v (HY 2(b)), v (HY (b))} 

Proof. By hypothesis, S has no degenerate fibers, so by Proposition 1.4 the six 
quartic forms G- (x),H?.(x) have no common zeros. It follows that both sides of 
(32) are AIK-bounded, AlIK-continuous functions. It thus suffices to prove that 
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they are equal on a Zariski open subset [3, Chapter 10, Proposition 1.5], so we may 
assume that G (a) :A 0 for all 0 < i < 2. 

Writing ozP = (a, b'), we recall from Corollary 1.5 that b and b' satisfy 

[bbi,b b b +b'b b7,bb] = [Gx (a),-Hx (a),Gx (a)]. 

This is a relation in 2, so there is a nonzero constant ft such that 

(34) Gx (a) = 1tb b' and - Hxi(a) = 1tt(b bi + b'b3) for all i,j. 

WVe evaluate the formula (24) for &V at P (a, b) to obtain 

6x (P,v) = v(Gx (a)) - 4 min {(aI)} - max {v(b,bJ/b2b)}. 0<2<2 0<i.j'<2 

By (34) and the fact that a has v-minimal coordinates, this becomes 

(35) 6x(P,v) = v(tl) + mm I {v(bb )}. 

In order to complete the proof of Theorem 5.1, we will use the following elementary 
result. 

Lemma 5.2. Let v C Al be non-Archimedean and let x, x', y, y' C K. Then 

min{v(xx'), v(xy' + x'y). v(yy')} = min{v(xx'), v(xy'). v(x'y). v(x'y')}. 

Proof. See [3, Chapter 3, Proposition 2.11 or [4, VIII.5.9]. 0 

Resuming the proof of Theorem 5.1, we apply Lemma 5.2 repeatedly to (35). 
Mlore precisely, for any 0 < i < j < 2 we have 

min{v(b b'), v(b2b/ ),v(b'b.), v(bb b) } 
- min{v(b-b/), v(b2b/ + bl.b ),v(b bl)} 

=min { v (,u- Gxt (a) ), v ( ,u HxJ (a) ), v (tl- Gx (a) )} 

Taking the various values of i, j and substituting into (35) gives the desired re- 
sult. O 

An important corollary of Theorem 5.1 is an effective criterion which lets us 
easily calculate the canonical local height at all but finitely many absolute values. 

Corollary 5.3. Let v C Al be a non-Archimedean absolute value, and assume that 
the forms L(x, y), Q(x, y) defining S have v-integral coordinates. Assume further 
that the six quartic forms Gx (x), Hx (x) have no common roots in the residue field 
kv, and similarly that the six quartic forms GtY(y), Hy (y) have no common roots 
in kv. Then the canonical local height functions on S are given by 

A (P, v) = AE+ (P, V) and A (P, v) = Sk- (P, V), 

where to evaluate AkE+(P, v) and AE- (P, V), we write P = (a, b) using v-minimal 
coordinates. 

Proof. The conditions we have imposed on the quartic forms combined with The- 
orem 5.1 imply that 

6x(P, v) = 6y(P, v) = 0 for all P C S(K). 

The desired result then follows immediately from Proposition 4.2. 0 
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6. AN ALGORITHM TO COMPUTE o--, o , X AND 4 
In this section we will describe an algorithm to compute the automorphsims or, 

0y, q, and 4' on the surface S. In view of the fact that q = aY o ax and 4' = a' o jY, 
it suffices to compute ax and ay . The following result performs this task. 

Algorithm 6.1. Let P = (a, b) E S, where we no longer assume that all fibers of 
S are nondegenerate. 

(a) Assume that Sar is a nondegenerate fiber, and write jXP = (a, b'). Then 

{ [boGx(a),-boHoxl(a)-bbGx(a),-boHOx2(a)-b2Gx(a)] if bo 7 0, 

b' = [-biHoxl(a)-boGx(a),b,Gx(a),-b,Hx2(a)-b2Gx(a)I if b j O, 

[-b2H0x2(a) - boGx(a), -b2Hx2(a) - biGx(a), b2Gx(a)] if b2 & 0. 

(b) Assume that Sb is a nondegenerate fiber, and write &yP = (a', b). Then 

[aoGo(b), -aoHo'1(b) - aiGy(b),-aoHoY2(b) - a2G0 (b)] if ao : 0, 
a' = -aHoyl(b) - aoGY(b),aiGY(b), -aiHy2(b) - a2GY(b)] if a, 4 0, 

[-a2HOY2(b) - aoGy (b) -a2H'2(b) - a,Gy(b), a2GY (b)] if a2 & 0. 

Proof. Let (x, y) E S be a generic point, and write ax (X, y) = (x, y'). Corollary 1.5 
tells us that 

YeYJYoYO = Gx (x)/Gox(x) and Gox(x)yj' + Hoxe(x)y'y' + Ge(x)yfj = 0. 
Substituting the first equation into the second allows us to eliminate Gx (x), and 
then multiplying by Yo/Ye gives 

(36) Gx(x)yoy' + H&z(x)yoy' + Gx(x)yye = 0. 
Applying (36) with f = 1 and f = 2 yields 

Y = [Yo, y/, Y] = [yoy'Go (x), yoy'Gx (x), yoy'GO (x)] 
= [yoGx (x), -yoHOx1 (x) - y1GOx (x), -yoHx2 (x) - Y2Gx (x)]. 

This gives the first part of (a), and performing a similar computation using yi and 
Y2 in place of yo yields the other two parts. Note, however, that this only shows 
that (a) is true for generic points on S. 

In other words, we know that (a) is correct for the point (a, b) provided that 
the formulas in (a) do not give [0, 0, 0]. Suppose that bo + 0, and suppose that 
the first formula in (a) gives [0, 0, 0]. We are going to show that the fiber Sx is 
degenerate, contrary to assumption. The fact that the first formula in (a) gives 
[0, 0, 0] combined with our assumption that bo + 0 means that 

(37) Go(a) = Hox,(a) = Hox2(a) = 0. 
The fiber Sax is the set of solutions to the three equations 

GOx(a)Y12 + Hox1 (a)YoYi + Gx (a)Y02 = 0, 

Go(a)Y22 + Hox2 (a)YoY2 + G2 (a)YJ = 0, 

Gx (a)Y22 + H2 (a)Y1 Y2 + Gx (a) Y12 0. 

(See Corollary 1.5.) Substituting (37) into these equations yields 

Gx (a)Y02 = Gx (a)Y2 = Gx (a)Y22 + Hx2 (a)Y1Y2 + Gx (a)Y12 = 0, 

which shows that the solution set is (at least) one-dimensional. Hence Sx is degen- 
erate. This completes the proof of (a), and the proof of (b) is similar. O 
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7. AN ALGORITIMI TO COMPUTE CANONICAL LOCAL HEIGHTS 

In this section we are going to describe a series for the canonical local heiglht 
A associated with the clivisor E+ and the automorphism 0 = oly O 

at. The reader will easily be able to reverse the roles of x and y to produce the 
analogous series for the canonical local heiglht associated with the divisor E- and 
automorphism ) 0= o yO. See the appendix for code implementing both 
algoritlhms. 

\Ve know from Lemma 3.2(b) that 

.3 ~~~32 
Ci*F:+ E= -S2F+ + div(f) with f =( Gy; ? (y) < G( x) E-- with 4( 0 or) 

For each pair of (possibly identical) indices i,j C {0, 1, 2} we define a rational 
function on S by the formula 

tij = )C VK(S) R. 

\Ve write the divisor of t,j as 

div(t3) - E+- D. and note that ID.I= {x= = 0} U {yj = 0}. 

For example, tmnll,-- 1 and Dmrlrl = E+. 
The nine divisors D,j have empty intersection, so they form a set of parameters 

with which to calculate the convergent series for A+ described in [2]. As in [2], the 
next step is to define two additional rational functions 

2~~~~~~~~~3 
w7i= f . t i and zij oa 

with divisors 

div(uWZ)) = E+ 32D.7 and div(zi1) = o Di;- 32D ?. 

Finally, for any set of four indices i,j, k, I C {0, 1, 2} we define the transition func- 
tions 

32 

(38) Sijkl = ZklWi f J with divisors dliv(s8?).lk) D - 

W1'kl tkl 0 5 

The rational function Sijkl has poles and zeros contained in the support of D,j 
and 0 *Dkl. Suppose that we want to evaluate Sijkl at a point P which is not v- 
adically close to dcliv(s1jlk) , which means that Sijkl(P) 

LI 
should not be large or 

close to 0. If we attempt to evaluate sijkl(P) by first calculating f(P), tij(P) 
and tkl(OIP) and then using formula (38), we are likely to run into trouble. The 
problem is that these three factors from (38) may individually be i.-adically large 
or small. So we need to rewrite the formula for Si jkl to reflect any cancellation that 
occurs. 
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To make the notation somewhat easier, we will write 

P = (x,y), o. p = (x,y'), I P = 'Y(x, y') = (x",Iy'). 

Then the definitions of Sijkl, tij, and f given above lead to the formula 

= ( GY(y') G (x) 03 2 // 
Gyl (y/ )4 J m XiJ YnJ X J Yn 

f ta2 1/tklO? 

Next we use the fact that 02 = 43 - 1 to rewrite the exponent of Xm/xi as /33 
4,2 - ,3 and to rewrite the exponent of yn/y/ as 1 = 4/3 _ -2. Then a little algebra 
gives 

(39) / ~~~~Gjy (y) xi-Xk Gxnjx) yj y' 
(39) Sijkl = (()4 XmXk 

The formula (39) is still not usable, since for example it gives a zero in the 
denominator if any of Xm Iy Ynn, X"4 is zero. In order to create a usable formula, 
we need to briefly recall the series for A+ described in [2]. To compute A+ (Q, v) we 
take the sequence of translates Q, q$Q, 02Q,.. . and perform certain computations. 
Suppose that we have just performed the computation associated with p = ?)nQ. 
In particular, we will have chosen indices (i', j', i, j) so that at the previous stage 
we computed si,jti(q5n-IQ). It is not important to know now how the value of j 
was chosen, but we will see that i can be chosen to satisfy 

(40) max{ xo/xiiv, |xl/XiIv, 2/Xi/Ivx }= 1. 

Next we compute the point qP = (x", y') and use the result to choose in- 
dices (k, 1) satisfying the conditions 

(41) max{0xo /xk[, [ x2/xk[v} 1 and 
max{IyO/y'Iv, IY/YI v, IY2/YIlV} = 1. 

Notice that the index k is chosen so that it can become our i when we replace P 
by OP. The next term in the series for A+ (Q) will be 

A-2e log X 

and our general theory tells us that this term is bounded by Q(p-2e). Our task is 
to find the value of Sijkl(qeQ) = Sijkl(P) without dealing with numbers that are 
very large or very close to 0. The formula (39) for Sijkl has two factors which we 
deal with separately, so we will write 

Sijkl ~ 02Gy(y') ____ ad Gx (x) yjy 
Sijkl = B AO with Aikl (h)m k and B Xn 1 X4 

We begin by calculating u We consider t c ases vve begin by calculating Bi .1. We consider two cases: 
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Case lB. lYj/Yiv < 1. 
The formula for &- given in Corollary 1.5(a) tells us in particular that 

YlY/YnY' = G (x)/G (x). 

Hence, 

(42) Bij G = (xi Yi/ yj G( yj 4 . /4 
xi YnYn Yi X. Yi 

Note that it is easy to compute Gx (x) /x4, since this number is a polynomial in 
the quantities xo/xi, xi/xi, and x2/xi, each of which has absolute value at most 1 
by (40). Further, our assumption for Case lB says that lyj/yI, < 1, so the other 
factor of Bijl in (42) also has bounded absolute value. Thus (42) gives a good 
formula for computing Bij, in Case lB. 

Case 2B. IYj/Yi > 1. 
Corollary 1.5(a) tells us that the point y E pIP2 satisfies the homogeneous equation 

G(x)y + H(x)yl (x)yi A Gx 

We divide this equation by YjYl to obtain 

GX (x) (yi /yj) + Hjxl (X) + G (x) (yj /yi) = 0 

Now we substitute this into the formula (42) for Bijl, which yields 

(43) B-jj = _ GX(x) Yi _ H (x) 

xi yj1 7 

Each of the quantities 

IjX(X) /X4 | l/iIv |H,(XX4 |V 

in (43) is bounded above. Hence (43) gives a good formula to compute Bij, in 
Case 2B. 

The computation of Aikl is very similar, the point being that (41) says the 
coordinate y' appearing in the denominator of Aikl is the largest coordinate of y'. 
We again consider two cases. 

Case IA. IXi/Xklv < 1. 
The formula for oY in Corollary 1.5(b) tells us that 

XkXk/XmX = G-(y')IGY )- 

Note that we are applying the formula for oY to the point (x, y'). Hence, 

(44) Aikl =G (y') XkXk x = Gy (y') xi 
(Y/4 XmX/ X k (yP)4 Xk' 

Each of the two factors on the right is bounded, so (44) is a good formula for 
computing Aikl in Case IA. 
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Case 2A. Ixi/xk I > 1. 
The point (x, y') is a point of S, so Corollary 1.5(b) says that x c p2 satisfies 

Gi (Y')X' + Hik(y')XiXk + GY(y')xi - 0. 

Dividing this by XiXk and substituting into the formula (44) for Aikl gives 

(45) Aikl = G ,(Y') Xk _ H,(y') 

As before, each fraction in this expression for Aikl is bounded, so (45) can be used 
to compute Aikl in Case 2A. 

We have now given a method for computing Bij, and Aikl which does not involve 

using very large numbers. On the other hand, the product Sijkl = A B)A' is iki ijl3 
uniformly bounded away from 0, so neither Bijl nor Aikl will be too small. This 
completes the description of the algorithm to compute A+. See the appendix for 
code implementing this algorithm and the analogous algorithm for . 

8. A NUMERICAL EXAMPLE 

We will consider the surface S/Q already studied in [6]. This is the K3 surface 
defined by the forms 

L(x, y) = Xoyo + xlyl + X2Y2 

Q(x, y) = x2802 + 3xoxly 2 +A x2y2 + 4x2yoyl + 3XoXloyl - 2x2oy 2- xy2 

+ 2x 2y2- XoX2Y2 - 4x1X2 y2 + 5xox2yoy2 - 4xlX2YOY2 

A 7x2Y1Y2 + 4x1y2Y12 + XoXlY2 + 3x28y. 

For later reference, we list the associated Gi's and Hij's in Table 1 (next page). In 
this section we will work over Q, and p will always denote a prime in 2. 

Our first job is to find those p's for which the error functions 6' ( , p) and 6Y (. p) 
can be nonzero. Theorem 5.1 tells us that 8x( ,p) is nonzero if and only if the six 
polynomials 

(46) {Go I GlxI G2xI Hoxl Hox2,Hx 

have a common zero modulo p. (We say "zero" for a zero with at least one nonzero 
coordinate, or equivalently a zero in p2.) Elimination theory says that there is a 
finite set of polynomials in the coefficients of the G-T's and H'j is whose vanishing is 
equivalent to the existence of a common zero. (See, e.g., [8, ?16.51.) However, we 
will use ad hoc methods to get the result we want. 

Our first observation is that any five of the polynomials in (46) have a common 
zero. More precisely, 

Gx = Gx =G H2 =Hx2 = 0 at ([0, 0,1], [1, 0, 0]) E S, and 

G =Glx =Ho', = Hox2-=Hlx = 0 at ([0, I, 0],I [0, 0, 1]) E S. 

So in order to find some necessary conditions for the polynomials (46) to have 
a common zero modulo p, we will use some linear combinations of the given six 
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TABLE 1. The G and H polynomials attached to the surface S 

? x= x 3- 7X2X1X2 - 4x3x2 _ X2X2 + 5x2x2 - 3xo - 4xx3 

?1 = X3 lx02 2 
7xox, X2 + X12X2 x Ox1 - XOX2 A- 2xxx A- 2~ 

--2 -X4x-4X3X1 + 3xox3 + X4- _X- X2 - 4X2X1X2 + 2xoxlx2 

Hox- = 2x2x 2- 7x3x2 - 4xoX2X2 -+ 4X2X2 +A 4x0xl A- + 42X2 - 2X42 

Ho =-7x3xi - 4xox3- 2xx2 - 4x2x1x2 A- 6x0xx2-44x2 - 2xx 
OX2 ~ ~ ~ ~~8XS X2 + 6xlX X32 

-8xoxlx~ A- 2xjx 3 

Hx = 7x4 A 4x2x2- 4x3x2 - 6x2xlx2 + 10xoXX2X2 + 2x3X2 + 2xox 3 

G- =-2yoy A+ 4y3Y2 +A y2y+ A 4yoyly22 + 5yY22 A+ 4y,y3 

Gy? =2y~y 3 -YY2 2 2 A-4yoyly 
2 _y2y2 A-7y,y 

3 
G1 =- yYl + YoYl Y2 - YOY2 2 4YY Yl YY2 +YY2 

G- = y 4- 3y3YA + 4yoYl3- Y4 + 4yo2y1Y2 + 7Y3Y2 - YoYiY2 

H-yl =-4y2 y2 + 4yoylY2 -+ Y3Y2 + 7y2y22 + 4yoyly22 + y4 

Ho8 = 4yoy 3Y_4 + 2y 3y + Ol2 + YY2 2 8YYY2YY3 -L L02 =-4yoy A y2 A- YoY1Y2 A- 6yy1Y2 + 8yoyliy2 - YiY2 

H~~'2 4Y~y A- yoy- 7Yy2 - 6 Yyy2 A- 8yoy2y2 - 2y31Y2 A- 14 y2y2 YOY3 

polynomials. We will begin with the three polynomials 

Go, Hlox + G, Gx 

If we take the polynomials HoxA + Glx and Gx and set xo 0, we get 5x2x2 - 2X4 
and x 4. It follows that these two polynomials have no common zeros with xo = 0 
except possibly in characteristic 2. In the following we will use tildes to denote 
polynomials dehomogenized by setting xo 1 or yo = 1 as appropriate. Thus, 

Gox(xi, x2) = 
Gox(1, Xl, x2), .. , Hy2(yl, Y2) = H2(1, Yl, Y2) 

We begin by eliminating the variable x1 from three polynomials Gx, Gx + Hoxl, 
and GO. To do this we compute the two resultants 

Rx = Resx, (Gx + Hoxl, Gx) 

= -11 - 535X2 + 5917xz - 21158Xz3 + 26697x4 A+ 19555x5 - 1O044Ox6 

+ 230414 A+ 58460x8 - 101581x9A + 41839x 0A + 3744x1- 15916x12 

A+ 7336x13 -1072x14 + 16x16, 

Rx = Resx, (Gx) Gx + Hoxl) 

= 50x - 549x2 + 191x - 5603x5A + llllx - 191864A + 2334x8 - 30256x9 

- 1510x'0 - 6657x1 - 73952 - 204x4 -1068x4. 

Next we take the resultant of these two polynomials (with respect to the only 
remaining variable x2) to arrive at the integer 

Sx = Resx2 (Rx, Rx) = 614651210694951578069424669784292475173585750433 

05196295025171217169011687132016108827091702190420366131200. 
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We now know that X ( ,p) = 0 for all primes not dividing S'j. 
It is easy to check that S' is divisible by 2163165211237 . 43, but there is no 

point in performing a complete integer factorization. Instead we perform the same 
calculation with the three new polynomials 

Hxv HoHA +-G, G Gx 

The second and third are the same as before, so have no common root with xo 0. 
Again we dehomogenize and compute 

Rx = Resx1 (Hox1 + Gx, Gx) and Rx =Res 1 (H ox,Ho1 + Gl), 

and then the resultant of Rx and Rx with respect to x2 is 

Sx = 9681750560643217568603549778745296289233120916312184763882 

763457823823874559309071500584839679064448856568627200. 

Again we can find some small factors of Sx, such as 2203165261 . 71. But the 
crucial fact is that if the error term 5x( ,p) is ever nonzero, then p must divide 
both Sx and Sx. It is now a simple matter to compute 

gcd(Sx, Sx) = 324661155228895023119937989836800 

= 21631652 317 14521485737273461, 

so (. ,p) = 0 except possibly at the five primes dividing Sx. 
But there is no need to stop here. Next we try the polynomials 

Gxx +T Hox, 
x 

Gxx 0 + ll 1 v 2- 

The procedure outlined above gives 

sx = -1075829737901132846394168194849857103159139004416, 

and then we compute 

S =23 gcd(Sx, S2x, Sx) = 13745412929469382340087808 

=21236 . 317 14521485737273461. 

Taking several other triples of linear combinations of the six polynomials in (46) 
leads to the same four primes, so it is for these primes that the error 5x might 
be nonzero. Further, Theorem 5.1 implies that this multi-resultant gives an upper 
bound for the error function, namely 

5X( (p) p< Vp(SX23). 

In order to compute canonical heights on S, we must also find out when the 
other error function 6y can be nonzero. Without giving any details, we compute as 
above 

Ry=Res = ey 1 + koyl)) S2y = Res=Rsl G8 18+HY) 
R3 eYi (Ht182 , 1 o1 ) 18 =eY2 (Ry) R ) ) Sy8 = Resy2(1 3) 

Sy2 = gcd(Sl', SY) 22756 31 .507593 2895545793631, 

R48 Resyl(o ol 8) Ry8 Res y (G0vGy)) S3Y = Resy2R8 5) 

S - gcd(Sf, Sy, SY) 227 . 507593 2895545793631. 

Thus, 5Y( ,p) is zero except possibly at the three primes dividing Sy 
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We summarize the above discussion in the next proposition. 

Proposition 8.1. Let S/?Q be the K3 surface described at the beginning of this 
section, and let 6' and &' be the error functions (18,19) associated with S. Then 
for all number fields K, all non-Archimedean absolute values v on K, and all points 
P E S(K), 

0 < 5X(P, v) < v(212 36 . 317 14521485737273461) and 

0 < 5Y(P, v) < v(227 507593 2895545793631). 

Proof. Since G* and Hij have integer coefficients, it follows from Theorem 5.1 that 
6x and 6y take on nonnegative values. This gives the lower bounds, and the upper 
bounds are just a summary of the discussion given above. O 

Next we give some useful estimates for points in S((Q). 

Proposition 8.2. Let S/Q be the K3 surface described at the beginning of this 
section, and let 6x and 5Y be the error functions (18,19) associated with S. Further 
let P = (x, y) c S (Q). 

(a) 6x(P,3) =0. 

(b) 5y (P,2) =0. 

(c) 5x(P, 2) = { if x-[0,0,1] (mod 2), 
O otherwz'se. 

(d) If x- [0, 1, 0] (mod 2) or x [1,0,0] (mod 2), then 

6xX(O' P,2) = 0 for all n C Z. 

Proof. (a) Note that if 5x(P, 3) > 0, then the x-coordinate of P is a solution of the 
simultaneous congruences 

Go'(x) =Gt(x) _G'(x) _ Ho',(x) _ HO'2(x) _H'(x) -0 (mod 3). 

However, it is a simple matter to evaluate these polynomials at the 26 points in 
W2(F3) and verify that they have no common roots. Hence 5X(P, 3) = 0 for all 
p c W2(Q3). 

(b) Similarly, one can check that the six polynomials {Gi', Hy' } do not all vanish 
at any of the seven points y c W2(F2), so 5Y(P, 2) = 0 for all P EE W2((Q2). 

(c,d) We begin with a brief examnination of the surface S in characteristic 2. Our 
first observation is that S/IF2 is singular, or more precisely, 

P1 = ([0, 0, 1], [1,0, 0]) c S(F2) is a singular point of S/IF2. 

There are 11 points in S(F2), which we label as follows: 

P1 = ([o, 0, 1], [1, 0, 0]), P2 = ([o, 0, 1], [0, 1,]), P3 = ([o, 0, 1], [1, 1, 0]), 

P4 = ([0, 1,0], [0,0, 1]), P5 = ([1,0,0], [0,0, 1]), P6 = ([1,0,0], [0, 1, 1]), 

P7 = ([1,0,1], [0,1,0]), P8 = ([1,0,1], [1,1,1]), P9 = ([0,1,1], [1,1,1]), 

Plo = ([I, 1, 1], [1, 1, O]) Pi, = ([I, I, 1], [1, O, 1]). 

Evaluating the Gi's and HiJ's at these points, we see that ox is not well defined (in 
characteristic 2) at the three points Pi, P2, P3, but it is well defined at the other 
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TABLE 2. The action of &- and o&Y on S(F2) 

P o.XP o.YP 

P1 - P1 
P2 - P7 

P3 - P10 
pi Pi P3 
P3 P6 Pi 
P6 P5 P6 

P7 P8 P2 

P8 P7 P9 
P9 P9 P8 

P10 P11 P3 
P1i1 P1( P1i1 

eight points in S(F2). Further, ojY is well defined at all points of S(F2). The action 
of the involutions o-, &- on S(F2) is given in Table 2. 

Notice in particular the closed loop made up of the three points {P.R, P5, P6}. It 
follows that if P C S(Q) reduces to one of these points modulo 2, then the same is 
true for every iterate 0" (P). Hence for such a point, x (IIP, 2) = 0 for all n C, 
which conmpletes the proof of (d). 

It remains to verify (c). If x g [0, 0, 1] (mod 2), then one of the G['s or Hx's 
is nonzero modulo 2, so 8x(P, 2) -0. On the other hand, if x -[0, 0, 1] (mod 2), 
then evaluating the Gx's and Hx's at P, we see that 

Hx, (x) 2 (mod 4), Gx (x) -0 (mod 2), and 

Gx (x) Gx G(x) _= H(~2 (x) Hx H(x) =_ O (mod 4). 

It follows from Theorem 5.1 that 8x(P, 2) = 1. O 

We are now ready to compute the canonical height of some representative points 
in S(Q). We will begin by calculating h+(Q) for the point 

Q ([o U,Io,[o,o,11). 

Note that Proposition 8.1 combined with Proposition 4.2 says that 

A+(Q, p) = -l.t- (Q, p) 

except possibly at the "bad primes" 

(47) {2,3,317,507593,2895545793631,14521485737273461}. 

F'urther, Proposition 8.2(a,b,d) tells us that 

5x(ollQ,2) = 8x(c?Q,3) 
- 

8'(<Q,2) = 0 for all n C Z, 

and Proposition 8.1 gives 6' (7t Q, 3) 0, so another application of Proposition 4.2 
yields 

A+ (Q, 2) = A1.,+ (Q,2) and A+ (Q, 3) = Al-,+ (Q,3). 
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TABLE 3. The iterates qY'Q modulo 317 

n (g)nQ (mod 317) 

0 ([O, 1, O],[O, , ]) 

1 ([316,0,0], [0,310,316]) 
2 ([257, 27,128], [52, 183, 226]) 
3 ([144,113,104], [291, 57,160]) 
4 ([271, 207,107], [292, 98, 90]) 
5 ([155, 94, 226], [258, 250, 210]) 
6 ([79, 245,43], [311,124, 285]) 
7 ([312, 227,306], [289,184, 294]) 
8 ([72,185, 83], [293,17, 235]) 
9 ([243,312,125], [265, 168, 227]) 
10 ([308,162, 54], [41,227, 224]) 
11 ([132,300,136], [297, 256, 126]) 
12 ([106,160,49], [241, 263,179]) 
13 ([53, 70,118], [286, 218,301]) 
14 ([72,105,142], [201,158,67]) 
15 ([110,231,204], [136,105,117]) 

This takes care of two of the bad primes. 
In order to estimate \+(Q,p) at the other bad primes, we want to use Corol- 

lary 4.3. This means we need to find bounds Cx and C" as in (29) and an integer N 
as in (30). The first part is easy, since Proposition 8.1 provides absolute upper 
bounds for 5X (P, p) and &' (P, p). 

For the second part, we observe that the Algorithm 6.1 for computing u` and uY 
fails precisely when the G.'s and Hi 's have a common root. So if we work "mod- 
ulo p", Theorem 5.1 says that the algorithnm fails exactly when 6' or b' is nonzero. 
This means that if we start with Q, and if we can use our algorithm to com- 
pute q5fnQ (mod p) without encountering a point with a [0,0,0] coordinate, then 
6x(ofn Q, p) = pY(on Q, p) = 0. It is a simple matter to program the algorithm for q5, 
and since we only need to work modulo p, the numbers don't become too large. (In 
other words, it would not be possible to compute say q$20(Q) exactly in S(Q), but 
it is quite feasible to compute it in S(Fp) for any moderate size p.) 

For example, the iterates qnQ (mod 317) are listed in Table 3. It follows from 
Table 3 that x(obnQ, 317) = 0 for all 0 < n < 15, and we already know from 
Proposition 8.1 that 6y(ofn Q, 317) = 0 for all n. So we can apply Corollary 4.3 with 

p = 317, cx = v(p) = log(317), C" = o, N = 15, 

to obtain the estimate 

I Y (Q) 317)1 =I (Q) 317)- AE+(Q, 317) 2 log(317) 3. 1018. 

We can deal with the other bad primes in a similar manner. Thus, Table 4 allows 
us to apply Corollary 4.3 with 

p = 507593, Cx = 0, C" = v(p) = log(507593), N = 15. 
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TABLE 4. The iterates qYnQ modulo 507593 

n ?)nQ (mod 507593) 

0 UI A ID([,1,0]4,0,11) 
1 ([507592,0,0], [0, 507586, 507592]) 
2 ([505948,344, 505185], [14078,253785,419137]) 
3 ([440714,104662,327579], [476070,436327,483230]) 

14 ([308966,48587,503331], [141252,226154,476629]) 
15 ([474867,299570,409761], [119433,10607,79029]) 

This gives the estimate 

(Q - P) A (QP) -AE+(Q,P) <I 2 -21 log(p) 2.6.10-17 for p = 507593. 

We will not bother listing the corresponding tables for the two larger bad primes, 
but will merely give the results 

|^+(Q, P) - A(Q,P)-AE+ (Q,P) 
{ 5.75 10-17 for p = 2895545793631, 

2 10-17 for p = 14521485737273461. 

Summing over places of Q, these computations show that 

h+(Q) + >(Q) (x)) + 1 E S+ (Q P) 
p finite 

with an error of at most 1.1 10-16. It remains to compute the Archimedean 
contribution. Of course, this is only valid if we choose for E+ a divisor E+ 
whose support does not contain Q, which in this case means taking E+. Then all 
of the AE+(Q,p)'S vanish, so h+(Q) )+(Q,oc). It only remains to implement 
the algorithm described in ?7 (see also the appendix) and use it to compute this 
Archimedean height. We carried out this computation to obtain the estimate 

h+(Q) 0.1475 76. 

Further, since uX(Q) = Q, we can use Theorem 3.1(ii) to get the other height for 
free, 

h-(Q) = /h+(oXQ) = 3h+(Q) 0.55076. 

We will conclude by computing the height of the point 

R = ([O, , 1], [1, , O]) c S(Q). 

Most of the calculation goes exactly the same as the calculation for Q. In particular, 
we find that the contribution from the bad primes p > 3 is negligible, so 

h+ (R) = A+ (R, oc) + A+ (R, 2). 
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Further, the algorithm for the Archimedean heiglht gives 

A+(R, oc) 1 0.892307, 

so it remains to analyze A+'(R,2). 
First note that 

G' (R) = G{ (R) = G' (R) = H 2(R) = H' (R) = 0, H,1 (R) -2. 

It follows from Theorem 5.1 that 

8x(R,2) = log(2). 

Further, if we use the formula for ao given in Algorithm 6.1 but work in the finite 
field F2, then we find that ax(R) = ([0, 0, 1], [0, 0, 0]). In other words, we do not get 
a well-defined point in P2(F2). However, suppose instead that we work to a higlher 
power of 2. For example, if we work modulo 4 we find that 

ax(R) _ ([0, 0, 1], [0, 2, 0]) (mod 4). 

We can then cancel a factor of 2 from the y-coordinate, but we must reduce the 
exponent of our congruence. Thus 

ux 
(R) ([0,0,, 1, [0, 1, 0]) (mod 2). 

As we continue to successively apply &-Y and oa, we may again run into points 
whose x- or y-coordinate is [0, 0, 0]. So we will work modulo a higlher power of 2. 
Table 5 gives 7ttR in the range 0 < n < 20, beginning modulo 212 and finishing 
modulo 21. The table also lists the values of x( ,2) and 8Y( ,2), where we are 
taking the normalized valuation at 2. Of course, we already know that J('X 2) = 0 
for all points in S(Q), so the last column is no surprise. 

One observation is that 8x appears to be nonzero in a very regular pattern. More 
precisely, it appears that 

6x (ol{R O if n 1 2, 3 (mod 5), 
8X(?/iR) { 1 if n 0,4 (mod 5). 

This suggests the existence of a "weak Neron model" for S over Spec(Z2), as de- 
scribed in [2, ?6]. 

If this pattern continues, we could compute A+ (R, 2) exactly, but in any case, 
we can use the table of values for 8x(0?iR, 2) to estimate the quantity 

A+ (R, 2) = AZ,-+ (R, 2) - 8x (R, 2) - 3-271 (6x (c7tR, 2) + .365Y (Ott, 2)) 
ii > 1 

= 0- log2 - E.(3-2n6x (cllR, 2) since 6' = 0 on S(Q2). 
ii > 1 

The table gives 

20 

S (3-2ni8x( o R 2) 

- (3-8 + 3i-10) + -18 + .(3-2() + (3-28 + .(-30( +.(3-'38 l-.1()Iog2 

0.00001974. 
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TABLE 5. The iterates q5nR modulo powers of 2 

n OnR (mod 2e) Fx 6y 

0 ([0,0,I], [I,0,0]) (mod 212) 1 0 
1 ([1,0,2047], [0,1,0]) (mod 21) 0 0 
2 ([528, 1931, 1533], [2039,2047,2039]) (mod 211) 0 0 
3 ([1585,1252,1599], [619,287,983]) (mod 211) 0 0 
4 ([1880,56,1881], [804,649,488]) (mod 211) 1 0 
5 ([88,96,345], [105,864,552]) (mod 210) 1 0 
6 ([257,172,3431, [436,329,192]) (mod 29) 0 0 
7 ([16, 27, 149], [379,343,471]) (mod 29) 0 0 
8 ([353,504,135], [399,495,431]) (mod 29) 0 0 
9 ([416,392,1], [192,65,120]) (mod 29) 1 0 
10 ([160,24,33], [193,160,96]) (mod 28) 1 0 
11 ([65,8,55]4 [32,65,104]) (mod 27) 0 0 
12 ([16,67,125], [127,111,127]) (mod 27) 0 0 
13 ([97,28,7], [3,111,63]) (mod 27) 0 0 
14 ([24,48,73], [52,57,112]) (mod 27) 1 0 
15 ([24,40,9], [25,32,40]) (mod 26) 1 0 
16 ([17,20,15], [4,25,24]) (mod 25) 0 0 
17 ([16,19, 5], [19,23,31]) (mod 25) 0 0 
18 ([1, 16,15], [23,15, 23]) (mod 25) 0 0 
19 ([0,16,1], [0,1,16]) (mod 25) 1 0 
20 ([?,0,1], [1,0,0]) (mod 24) 1 0 

Further, the estimate 5x ( , 2) < log 2 provided by Proposition 8.2(c) gives 

E ,-2n6x(on R 2) < E /Y-2nlog2 = ,B log2 < 10-24. 
n>21 n>21 

Adding these gives A+ (R, 2) -0.693167, and combining this with the Archimedean 
height yields 

h+(R) 0.199140. 

Finally, we can use the fact that oYR = R to compute the other height 

h-(R) = h-(o-R) = -P'h+(R) - 0.053359. 

APPENDIX. IMPLEMENTATION OF ALGORITHMS 

In this appendix we give code to implement the algorithmns described in -his 
paper. We take S to be the surface in Ip2 X Ip2 described by the simultaneous 
equations 

2 2 

L(x,y) = aijxiyj = 0, Q(X,Y) = b'jkliXYkyl = 0- 
i, j=O iZj.k,l=0 
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We assume that S has no degenerate fibers. We further assume that there are 
routines available to evaluate the polynomials 

Gx,G x,Hx 
02' 12 and GY GY Gy HT HY Hy 

Go G1 2 1 :oH2 an 0 1) 2, 01,O -02, 12 

described by the formulas (1) and (2) in ?1. 

Algorithm to compute (x. 

Input P = (x,y) = ([XO,XI,X2], [yo, y, Y21) (point on S) 
If Yo # 0 

[yO,y1,y2] = [yoGx(x), -yoHox1(x) - yIGOx(x), -yoHox2(x) - Y2Gx(x)] 
Else If y' + 0 

[YO, Y1, Y2]-[-yiHOX1(x) - yoGx(x), yi G1x(x), -yi Hx2(X) - Y2G1x(x)] 
Else If Y2 # 0 

[YO, Y1, Y2] = [-Y2Hox2(X) - yoGx(x), -Y2Hx2 (x) - ylGX(x), Y2GX(x)] 
End If 
Return ([ XO,XlX2 1, [YOSl Y21) 

Algorithm to compute cy. 
Input P = (x,y) = ([XO,Xl,X2], [YO Y1, Y2]) (point on S) 
If xO + 0 

[x/ I X/ I X2] = [xoGy (y), -xoHoy, (y) - xi GY (y), -xoHoY2(y) - x2GY (y)] 
Else If x1 + 0 

[x/, x/, x/] = [-xIHOYI(y) - xoG'(y), xiGy (y), -xi Hy2(y) - x2GY (y)] 
Else If x2 + 0 

[x/, x/, x/] = [-X2HoY2(y) - xoGY(y), -x2Hl'2(y) - xiGY(y), x2G2(y)] 
End If 
Return ([xi,x/,x Y1, [YO,YI,Y2]) 

Algorithm to compute $ and ,6. 
Input P = ([XO,XI X2], [YO,YI,Y2]) (point on S) 
(P) = ay(aYx(P)) 

Vb(P)= a (a (P)) 
Return $(P) and Vb(P) 

Algorithm to compute A+. 
Input P = ([XO,x1,x2], [yo, Y1, Y21) (point on S) 
Input N (number of terms to compute) 
Input m, n (compute local height for the divisor E+j 
Select i with xI - max{ Ixo , Ix |, x2 1} 
Select j with ly3| max{ |YO , IY2 } 
LocalHeight = 3 log - _ log 

Xm Yni 
Loop e = 0 to N - 1 

Compute Q = ([4x'j',x ], [Y, Y2,Y ]) =q(P) 
Select k with |x/$| = max{ 4xlll, x'l'l, x'| } 
Select 1 with ly/I = max{ IyO 1, IY1 1, Iy2 } 
If Iy3. ? Yi 

B = GI ( o XI X2 ) 
Xi Xi Xi Yl 
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Else Ly.|- > fyi! 

B =-Gx1((,z,X)Y Hx x x 9 

End If 

If fxij <? 3Xk! 

A = GiQ!IYo YI Y#) X 

Else jxi| > |xk. 

A - -G. (y'y1Y2) t _ Hy (ytyi 
mi 

End If 

LocalHeight LocalHeight+ +L-2,-1 log A + Y3-2, log B 
i=k j =1: P=Q 

End Loop 
Return LocalHeight 

Algorithm to compute A. 
Input P = ([3X7,X1,3X2] [yO,yl,y21) (point on S) 
Input N (numher of teriis to compute) 
Input n. nr (compuite local height. for the livisor E-7,) 
Select i with y7I= max{fyof, Iy,1 IY21} 
Select j with Ix)J =niax{fx0t,fxlf, 3X21} 

Localileight = 3 log Yi - 

log -.) 

Loop e = 0 to N - 1 

Compute Q = ([x8,x/ ,siX/ ], [yX/ ,Y',Y2) (P) 
Select k with Y$ I = nmax{IyJ 1, Y1'1, fY21} 
Select 1 with x7$ I max{ x',l 1,x /} 
If |xjf < lxI 

B] - Gy fYO YI Y28 xj 
VY 7 Yi Yi J XI 

Else fx.j > fx,f 

Y7 yo yyi X MI Yi Y> 
End If 

If fiY! ? fYkf 

A = G 31x.) Yi 
X~7 Xi X YA. 

Else |Yil > IYkI 

~1 ~2 YA. H7 . A = X- $i ? - 

End If 

LocalHeight = Locallleight +3-2e, ' log fAf ? B-2e log fBf 
k j=1: P-Q 

End Loop 
Return LocalIf eight 
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